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ABSTRACT

This paper studies the harvesting strategies for tilapia fish farming. Two logistic growth models have been used namely 
constant harvesting and periodic harvesting. Even though tilapia fish farming has been commercialized, the use of 
mathematical models in determining harvesting strategies has not been widely applied in Malaysia. Logistic growth 
model is appropriate for population growth of animal when overcrowding and competition resources are taken into 
consideration. The objectives of this study were to estimate the highest continuing yield from fish harvesting strategies 
implemented. Secondly, the study predicted the optimum quantity for harvesting that can ensure the tilapia fish supply 
is continuous. Finally, to compare the results obtained between the two strategies. The best harvesting strategy for the 
selected fish farm is periodic harvesting. These findings can assist fish farmers to increase the supply to meet the demand 
for tilapia fish.
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ABSTRAK

Makalah ini membincangkan tentang strategi penuaian untuk penternakan ikan tilapia. Dua strategi menggunakan model 
logistik iaitu strategi penuaian tetap dan strategi penuaian berkala diketengahkan. Walaupun aktiviti penternakan ikan 
tilapia telah dikomersilkan, namun penggunaan model matematik dalam menentukan strategi penuaian berkesan tidak 
diaplikasikan di Malaysia. Strategi penuaian adalah sangat penting dalam membantu penternak ikan untuk membekalkan 
keperluan ikan tilapia kepada pengguna secara berterusan dan memastikan juga populasi ikan tersebut berada dalam 
keadaan yang stabil. Objektif utama kajian ini adalah untuk menentukan hasil penuaian yang berterusan daripada strategi 
penuaian yang digunakan. Seterusnya, kajian juga ingin menganggarkan jumlah optimum untuk penuaian ikan bagi 
memastikan sumber ikan dapat ditampung secara berterusan. Akhir sekali, keputusan daripada dua strategi penuaian ini 
akan dibandingkan. Strategi penuaian yang terbaik untuk penternakan ikan tilapia adalah penuaian berkala. Penemuan 
kajian ini adalah diharap akan dapat membantu para penternak ikan untuk meningkatkan bekalan ikan tilapia bagi 
memenuhi kehendak pengguna dan pasaran.

Kata kunci: Berkala; biomatematik; model pertumbuhan logistik; penuaian; perikanan

INTRODUCTION

Fish is one of the major sources of human diet and the 
main source of protein and fat. Recently, consumers have 
become more conscious of fish as a healthier alternative 
meat. This is particularly due to the problems with 
overweight and cardiovascular diseases that have turn into 
one of the major problems in human health. Awareness of 
fish as nutritious diet has caused the demand of fish for 
food consumption to increase. Supply of fish cannot rely 
only on the ocean fishing activities, thus, alternatives can 
be found by commercializing the agriculture. 	
	 Tilapia fish farming has been an important source in 
some areas of the world and it is well suited for farming 
since they are fast growing and hardy. Tilapia fish also can 
establish strong population in very short time duration if 

the environment is right (Gertjan et al. 2005). This has 
made tilapia fish a very important protein source. 
	 Mathematical model have been used widely to estimate 
the population dynamics of animals for so many years as 
well as the human population dynamics. In recent years, the 
use of mathematical models has been extended to agriculture 
sector especially in cattle farming to ensure continuous 
and optimum supply. The logistic growth model in term of 
harvesting has been used to study the tilapia fish farming. 
According to Aanes et al. (2002), the most important 
for successful management of harvested populations is 
that harvesting strategies are sustainable, not leading to 
instabilities or extinctions and produces great results for 
the year with little variation between the years. Therefore, 
it can supply the market demand throughout the year.



172	

	 Harvesting has been an area under discussion in 
population as well as in community dynamics (Murray 
1993). Malthus was the first to formulate theoretical 
treatment of population dynamics in 1798 and Verhulst 
formed the Malthus theory into a mathematical model 
called the logistic equation that led to nonlinear differential 
equation (Alan 1992). Dubey et al. (2003), John et al. 
(2005) and Biswajit et al. (2007) agreed that it is a need 
to develop an ecologically suitable strategy for harvesting 
any renewable resource. Jing and Ke (2004a, 2004b), and 
Li and Wang (2010) studied the optimal harvesting policies 
as their management intention over a random harvesting 
time perspective. 
	 According to Idels and Wang (2008), constant 
harvesting is where a fixed numbers of fish were removed 
each year, while periodic harvesting is usually thought of 
a sequence of periodic closure and openings of different 
fishing grounds. Harvesting has been considered a factor 
of stabilization, destabilization, improvement of mean 
population levels, induced fluctuations, and control of 
non-native predators (Michel 2007). Further reference on 
harvesting strategies can be found in Cooke and Nusse 
(1987) and Ludwig (2006). 
	 In particular, fish farming in Malaysia has a great 
potential in economics contribution and supplying fish 
for food consumption. The use of mathematical model in 
harvesting fishes is conducted to help the fish farming sector 
and the Fisheries Department to estimate the population of 
tilapia fish for a given period. This will enable them to be 
prepared with effective solutions to ensure that the tilapia 
fish’s supplies can fulfill the consumer demand. 
	 The objective of this study was to estimate the 
highest continuing yield from fish harvesting strategies 
implemented. Secondly, the study recommended the 
optimum quantity of harvesting that can ensure that the 
tilapia fish supply is continuous. The final objective was 
to compare the results obtained between the two strategies. 
The strategies will ensure the supplies are continuous and 
the tilapia fish population stays is stable.

METHODS

The data for this project has been obtained from the 
Department of Fisheries of Malaysia and from the fish 
owner of selected ponds suggested by the Department 
of Fisheries of Malaysia situated at Gombak, Selangor, 
Malaysia. The Department of Fisheries Malaysia (2008) 
claimed that a fish pond can sustain 5 tilapia fish for every 
1 m2 surface area. The selected pond has an area of 15.61 
Ha, which is equivalent to 156100 m2, the sustainable or 
carrying capacity, K of the pond is 780500 fish. The period 
of maturity for the tilapia fish is 6 months and estimates that 
80% will survive to maturity (Thomas & Michael 1999). 
The Logistic Growth model can be written as:

	

Here the variable P can be interpreted as the size of the 
population. Its development over time, P(t) depends on its 
initial value P(0) and on the two parameters r and K, where 
r is called the rate of fish survive at maturity stage and K 
is referred to as the carrying capacity of the population. 
Parameter H was introduced as harvesting function. Two 
types of harvesting strategy were developed as follows;
(i)	 The logistic growth model with constant harvesting;

	
			 
(ii)	 The logistic growth model with periodic harvesting:

	

	 where,

	
	 H(t + 12) = H(t)

Note that H(t) is a periodic function of time with the period 
of one year. The fish population will not be able to extinct 
in fishing time since H(t) is a periodic function and varies 
from season to season. The amount of fish might be able 
to increase again if in some season the fishing activity is 
stopped. The value of harvesting is approximated to be 
156100 tilapia fishes by taking the summation value in 
the first six months. 

RESULTS AND DISCUSSION

The values of the parameters are r = 0.8, the estimation 
of fish that will survive at maturity stage and the value 
of carrying capacity, K = 780500. The equilibrium point 
is also called critical point or stationary point. At this 
critical point the fish population remains unchanged. The 
equilibrium points of the logistic growth model without 
fishing were obtained as shown:

	
  

	 0.8P = 0,

	 P = 0,

	 1 –  = 0,

	  = 1,

	 P = 780500,



	 	 173

	 This means that if the initial population started 
with P = 0, the population remains at P = 0. Similarly, 
if the initial population is started with P = 5780500, the 
population remains at the same level. The stability of this 
equilibrium points can be seen from Figure 1 where two 
values of an equilibrium points have been obtained.
	 Table 1 shows the intervals of equilibrium points that 
are showing whether the equilibrium point is stable or 
unstable.  P = 0 is an unstable equilibrium point because 
the solutions near this point are repelled. This means 
given an initial population P0 just above P = 0 and the P0  
less than 0, the population grows away from P = 0. The 
equilibrium point at P0 = 780500 is a stable equilibrium 
point because solutions near this point are attracted to it. 
This means given an initial population in the interval (0, 
780500), the population increases. If P0  is greater than 
780500, the population declines and approach a limiting 
values 780500.

Logistic Growth Model with Constant Harvesting

The Logistic Growth Model with constant harvesting as 
follows:

	

where the value of H is constant.
	 To determine the equilibrium points for H is 
constant:

	
	 0.8P – 0.00000102498P2 – H = 0.

By using square quadratic formula:

	 a = 0.00000102498
	 b = –0.8
	 c = H

	

Figure 1. Constant Harvesting

Table 1. Interval of equilibrium points for logistic growth model

Interval Sign of f(P) P(t) Arrow

(–∞, 0) Minus Decreasing Points Down
(0, 780500) Plus Increasing Points Up
(780600, ∞) Minus Decreasing Points Down
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	 Consider the expressions under the square root sign. 
Letting this expression equals to 0, we have:

	 (0.8)2 – 4(0.00000102498)H = 0
	 0.64 – 0.00000409992H = 0
	 H = 156100.6068 � 156100
	
	 When the value of  H = 156100 (known as a bifurcation 
point) then we consider 3 values of harvesting:
1.	 H = 156100
2.	 H > 156100
3.	 H < 156100

For H = 156100
	 From Figure 2, the value of harvesting, we have 
1 equilibrium point. For P0 larger than 389482; the 
population will decrease and approach to 389482. For P0 
less than 389482; the population will lead to extinction. 
	 Table 2 shows the interval of equilibrium point 
that shows whether the equilibrium is stable or unstable 
point.

For H > 156100 
	 From Figure 3, the value of harvesting is H = 160000  
and this figure shows the decreasing trends of tilapia fish 
population. This implies the fish population will go to 
extinction regardless of the initial population size. 

For H < 15000 
	 From Figure 4, the value of harvesting, H = 140000. 
There are two equilibrium points exist when the value of 
harvesting is less than 156100. The upper equilibrium point 
is stable because the arrow in interval (515584, ∞) is grows 
down and it show that the population of fish is decreased. 
However, the arrow in interval (264919, 515584) grows 
up and show that the population of fish is increased. The 
lower equilibrium point is unstable because the solution 
near the point is repelled. 
	 Table 3 shows that the interval of equilibrium points 
whether the equilibrium is stable or unstable points.

Logistic Growth Model with Periodic Fishing

The ponds have full carrying capacity of 780500 tilapia 
fish in the ponds as an initial population (Figure 5). For 
the first six months 156100 tilapia fish is assumed for 
harvesting until the population of tilapia remains 515584  
and followed by no harvesting for the next 6 months and 
this pattern repeats for several years. In order to ensure 
the population of tilapia fish is increasing, there are no 
harvesting in the next six months and the population of 
tilapia fish will increase until it approaches the carrying 
capacity,  K = 780500.

Table 2. Interval of equilibrium points for harvesting = 156100

Interval Sign of f(P) P(t) Arrow
(–∞, 389482) Minus Decreasing Points Down
(389482,  ∞) Minus Decreasing Points Down

Figure 2. Harvesting = 156 100
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Figure 3. Harvesting = 160000

Table 3. Interval of equilibrium points for harvesting = 1 000 000

Interval Sign of f (P) P(t) Arrow
(–∞, 264919) Minus Decreasing Points Down
(264919, 515584) Plus Increasing Points Up
(515584, ∞ Minus Decreasing Points Down

Figure 4. Harvesting = 140000
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CONCLUSION

The solution obtained optimizes the harvest while 
maintaining the stable population of fish is logistic 
periodic seasonal harvesting strategy. A harvesting 
strategy using logistic periodic seasonal harvesting 
strategy can be used to imporve productivity, shorten 
investment return time and reduce risk from changes in 
sale price and costs of productions, particularly when 
comparatively short return periods are used. However 
by using the constant harvesting, the fish farming does 
not have enough time to recover the fish population. 
The development of fish harvesting strategy probably 
can supply the market demand. It also can improve the 
commercial return to farmers before harvesting. This 
study can help in raising the fish such as tilapia fish 
in freshwater ponds for the farmer just like any other 
agricultural activity. 
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